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a b s t r a c t

The finite element solution for gas–solid reactions is developed to include fluid accumulation term in the
solid pellet (liquid–solid reactions) accompanied with structural changes in the solid phase. In these reac-
ccepted 8 January 2009

eywords:
luid–solid reactions
andom pore model

tions the fluid balance equation in the pellet is an unsteady state equation which is coupled with the solid
phase equation. The fluid balance equation is analyzed numerically by the combination of Rayleigh–Ritz
finite element method and finite difference approximation while the solid equation is solved by fourth
order Runge–Kutta method simultaneously. This method shows flexible behavior in all reaction regimes
even in the diffusion-limited regimes accompanied with significant structural changes. Equations of the
modified grain model and random pore model are considered in this work. Finally results of this work

other

odified grain model

ayleigh–Ritz finite element method are compared with some

. Introduction

Fluid–solid noncatalytic reactions have a pivotal role in the
hemical and metallurgical industries [1–6]. The major steps
nvolved in these reactions are the transport of the fluid reactants
nto the internal void space of the solid reactant, chemical reaction

ithin the solid phase and transport of products from the particle
nterior to the particle surface.

The structural behavior of noncatalytic reactions is a function
f the reaction products. In other words, when solid products are
ormed by the reaction, the structural changes depend on the ratio
f the molar volumes of this products and solid reactant. Because of
ontinuous evolution of the solid structure, noncatalytic fluid–solid
eactions have sophisticated partial differential equations. In mod-
ling fluid–solid reactions with structural changes, it is common to
onsider the reaction as occurring on internal surfaces of the solid.
he models can be classified into two categories as follows:

Those that consider the reaction on the surfaces of nonporous
rains. In other words the uniformly sized nonporous grains of the
olid react with the fluid reactant in the shrinking core behavior
7–9].
Those that emphasize instead the reaction initiated on pore sur-
aces within the solid pellet (random pore models) [10–15], which
onsider the pore space as a bundle of randomly connected capillar-
es which have various sizes and orientations. Detailed descriptions

∗ Corresponding author. Tel.: +98 21 64543198; fax: +98 21 66405847.
E-mail address: a.afshar@aut.ac.ir (A.A. Ebrahimi).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.01.009
existing solutions and experimental data successfully.
© 2009 Elsevier B.V. All rights reserved.

of pore growth and pore combination have also been realized
by population balance techniques [16–18]. In our previous work
[19] equations of the quasi steady state gas–solid reactions with-
out structural changes in the pellet were solved by finite element
method. Also the solution of several gas–solid reaction models by
orthogonal collocation method including structural and nonstruc-
tural changes has been done elsewhere [20].

In this paper the unsteady partial differential equation of the
fluid balance in the particle is numerically analyzed by the combi-
nation of Rayleigh–Ritz finite element method and finite difference
approximation while the solid equation is solved by the fourth
order Runge–Kutta method simultaneously. The solution technique
for the modified grain model is described in details. Other pre-
sented random pore model equations can be solved similarly. Some
computer codes have been developed for this purpose in MATLAB
media. This computer code is able to solve these equations with
various mesh numbers with significant accuracy even in the pres-
ence of high gas concentration gradients accompanied with severe
structural changes. Results of this work are compared with some
existing solutions and experimental data successfully.

2. Mathematical modeling

Consider the following fluid–solid reaction:
A (fluid) + �BB (s) → C (fluid) + �DD (s) (1)

The following assumptions are used in the modeling:

1. The diffusion in the pellet is equimolar counter-diffusion.

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:a.afshar@aut.ac.ir
dx.doi.org/10.1016/j.cej.2009.01.009
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. The system is isothermal.

. The pellet size is constant.

. The reaction is irreversible and first order with respect to the
gaseous reactant [2,7,11,13].

.1. Random pore model

The dimensionless governing equations of the random pore
odel for a spherical pellet are as follows [10,11]:

�2
r
∂a

∂�r
= 1
y2

∂

∂y

(
ıy2 ∂a

∂y

)
− �2

r ab
√

1 − lnb

1 + ˇZ/ [
√

1 − lnb− 1]
(2)

∂b

∂�r
= − ab

√
1 − lnb

1 + ˇZ/ [
√

1 − lnb− 1]
(3)

The initial and boundary conditions are expressed as

r = 0, b = 1, a = 0 (4)

= 0,
∂a

∂y
= 0 (5)

= 1,
∂a

∂y
= Sh

ı
(1 − a) (6)

Dimensionless parameters are defined in the notation. The
arameter � in Eq. (2) is normally small (i.e. � = 0.01 or less)
or gas–solid systems, where � can be as large as about 0.5 in
iquid–solid systems [21]. Pore size distribution in this model is
resented by the parameter  . Moreover, the structural changes
arameter Z, and product layer resistance are also considered (ˇ).
or Z > 1, the product layer molar volume is more than solid reactant
nd the porosity decreases with the progress of reaction. For Z < 1
he product layer volume is less than solid reactant and porosity
ncreases. Finally for Z = 1, the pore size is unaffected by the reaction.

The porosity of the pellet at each time can be expressed as fol-
ows [7]:

ε

ε0
= 1 − (Z − 1)(1 − ε0)(1 − b)

ε0
(7)

For relating pore diffusion to the pellet porosity two approaches
xist. First approach is from Wakao and Smith [21] as follows:

= De
De0

=
(
ε

ε0

)2
=
[

1 − (Z − 1)(1 − ε0)(1 − b)
ε0

]2

(8)

Second approach assumes that tortuosity factor of the pellet
emains constant during the reaction. The result of this approach is
s follows:

= De
De0

=
(
ε

ε0

)
=
[

1 − (Z − 1)(1 − ε0)(1 − b)
ε0

]
(9)

By Eqs. (8) or (9), the variation of pore diffusion with the progress
f reaction can be considered. In this work Eq. (8) was used, unless
therwise specified.

In this model the solid conversion for a spherical pellet can be
alculated by the following equation:

(�) = 1 − 3

∫ 1

0

y2b(�, y)dy (10)

.2. Modified grain model
The dimensionless governing equations of the modified grain
odel for spherical pellet and spherical grains are as follows [22]:

�2
g
∂a

∂�g
= 1
y2

∂

∂y

(
ıy2 ∂a

∂y

)
− �2ar∗2

1 + 6�2
g (r∗ − (r∗2 /r∗∗))

(11)
ing Journal 148 (2009) 533–538

∂r∗

∂�g
= − a

1 + 6�2
g (r∗ − r∗2 /r∗∗)

(12)

r∗∗ = [Z + (1 − Z)r∗
3
]
1/3

(13)

Z = �D	BMD
�B	DMB

(14)

where the initial condition is as follows:

�g = 0, r∗ = 1, a = 0 (15)

The boundary conditions are similar to Eqs. (5) and (6).
In this model the solid conversion for a spherical pellet can be

calculated by the following equation:

X(�) = 1 − 3

∫ 1

0

y2r∗
3
(�, y)dy (16)

3. Finite element method

In this section the spherical solid pellet is divided to the uniform
mesh from the center up to the surface of the sphere. Since the solid
concentration is known at the initial time, the fluid concentration
will be obtained by the combination of the Rayleigh–Ritz finite ele-
ment method and finite difference approximation for the next time
step while the grain radius (or solid concentration in random pore
model) is being calculated for the next time step by fourth order
Runge–Kutta method at each location in the pellet simultaneously.
This procedure will be repeated until final reaction time. Consider
a typical element˝e(ya, yb), whose endpoints have the coordinates
y = ya and y = yb, is isolated from the mesh. The weighted integral
form of Eq. (11) is as follows:

4


∫ yb

ya

w

(
��2

g
∂a

∂�g
− 1
y2

∂

∂y

(
ıy2 ∂a

∂y

)

+ �2
gar

∗2

1 + 6�2
g (r∗ − (r∗2 /r∗∗))

)
y2 dy = 0 (17)

where w denotes the weight function. Terms 4
 and y2 dy in the
above equation are due to spherical differential volume element of
the pellet which its radius is denoted by y.

Integration by parts is used on the second term of Eq. (17) to dis-
tribute the spatial derivative equally between the weight function
w and the dependent variable a:

−y2wı
∂a

∂y
+
∫ yb

ya

(
y2ı

dw
dy

da
dy

+ y2w��2
g
∂a

∂�g

+ wy2�2
gar

∗2

1 + 6�2
g (r∗ − (r∗2 /r∗∗))

)
dy = 0 (18)

Eq. (18) is the weak form of the differential equation. First term
in the above equation is related to natural boundary conditions in
the nodes of a typical element. The fluid concentration (dependent
variable) in each mesh is defined as follows:

a(y, �) ≈
n∑
j=1

aej (�)Lej (y) (19)

where Le
j
(y) are the one dimensional Lagrangian interpolation func-
tions over an element. The nodal values of the fluid concentration
ae
j
(�) are functions of time only. The above approximation is called

decoupled formulation in one-dimensional time-dependent prob-
lems in finite element method [23]. The value of n in Eq. (19)
depends on the order of the employed interpolation functions. For
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becomes zero i.e. the surface of the solid reactant is completely
blocked due to increase of the volume of the products (Z = 3.09). In
Fig. 4 the gas concentration versus radius of the pellet is presented
in case of Z = 3.09 at different times. In Fig. 5 comparison of this
work with the orthogonal collocation solution of Prasannan et al.
A.A. Ebrahimi et al. / Chemical En

nstance, n = 2 in case of using linear interpolation functions and
= 3 in case of employing quadratic interpolation functions respec-

ively. Also the higher interpolation functions can be applied but the
uadratic interpolation functions give the most accurate results in
his work. The quadratic interpolation functions which are used in
his work are as follows [23,24]:

e
1(ȳ) =

(
1 − 2ȳ

h

)(
1 − ȳ

h

)
, Le2(ȳ) = 4ȳ

h

(
1 − ȳ

h

)
,

e
3(ȳ) = − ȳ

h

(
1 − 2ȳ

h

)
(20)

here y is the element or local coordinate.
In the Rayleigh–Ritz method we have [23]:

= L (21)

Substituting Eqs. (19) and (21) into Eq. (18) results in:

∫ yb

ya

⎡
⎢⎢⎣y2ı

dLi
dy

⎛
⎝ 3∑

j=1

aj
dLj
dy

⎞
⎠+ y2��2

gLi

⎛
⎝ 3∑

j=1

daj
d�g

Lj

⎞
⎠

+
y2�2

gLi

(∑3

j=1
ajLj

)
r∗2

i

1 + 6�2
g (r∗

i
− (r∗2

i
/r∗∗
i

))

⎤
⎥⎥⎦dy

Li(ya)Qe1 − Li
(
ya + yb

2

)
Qe2 − Li(yb)Qe3 = 0 i = 1, 2, 3

(22)

In matrix form in a typical element we have:

Ke]{a} + [Me]
{ .
a
}

= Qe (23)

here

e
ij =
∫ yb

ya

(
y2ı

dLi
dy

dLj
dy

+ y2�2
gLiLjr

∗2

i

1 + 6�2
g (r∗

i
− (r∗2

i
/r∗∗
i

))

)
dy

= 1, 2, 3 j = 1, 2, 3 (24)

(25)Me
ij

=
∫ yb
ya
y2��2

gLiLj dy i = 1, 2, 3 j = 1, 2, 3

e
1 =

(
−y2ı

dY
dy

)
ya

, Qe2 =
(
y2ı

dY
dy

)
((ya+yb)/2)−

+
(

−y2ı
dY
dy

)
((ya+yb)/2)+

, Qe3 =
(
y2ı

dY
dy

)
yb

(26)

The most commonly used scheme for the time approximation
f Eq. (23) is the ˛-family of approximation in which a weighted
verage of the time derivatives at two consecutive time steps is
pproximated by linear interpolation of the values of the variable
t two steps [23]:

as+1 = as +��ȧs+˛
ȧs+˛ = (1 − ˛)ȧs + ˛ȧs+1 for 0 ≤ ˛ ≤ 1

(27)

For example when ˛= 0, Eq. (27) gives the forward difference

pproximation and when ˛= 0.5, Eq. (27) gives the Crank–Nicolson
cheme which is used in this work.

Employing the ˛-family of approximation, Eq. (23) over a typical
lement becomes:

[Me] +��˛[Ke]){ae}s+1 = ([Me] −��(1 − ˛)[Ke]){ae}s +��{Qe}
(28)
ing Journal 148 (2009) 533–538 535

Assembling Eq. (28) results:

[A]{a}s+1 = [B]{a}s + {Q } (29)

A, B are 2 × N + 1, 2 × N + 1 symmetric global known matrices and N
is the number of mesh in the pellet domain (from the center up to
surface of the spherical pellet). Assuming negligible external mass
transfer resistance, the fluid concentration at the surface of the pel-
let is being known. Since there is not any point source or point
sink in the domain of the problem, all of the components of the
{Q} are zero except the last component. Considering Eq. (15), all of
the components of {a}0 (the gas concentration vector at the initial
time) are zero except the last component (a(2 × N + 1, 1) = 1).thus
the system of equations (Eq. (29)) shall be condensed [23,24]. The
resulting system of equations should be solved. Therefore the fluid
concentration vector for the next time step becomes known. Simul-
taneously, since the fluid concentration is known at the initial time,
Fourth order Runge–Kutta routine is used for solving Eq. (12). Thus
the grain radius (or solid concentration) will be obtained for the
same next time step. This procedure will be repeated until the final
reaction time.

4. Results and discussion

In Fig. 1 results of this work are compared with the results of Shi-
ravani et al. [25] (quantized method). In this figure, different values
of the reaction Thiele modulus are considered. In Fig. 2 a compari-
son has been done between the results of this work with the results
of Georgakis et al. [22] which is based on orthogonal collocation
method. In this figure significant structural changes is considered
while the accumulation parameter is about 0.001 (a gas–solid reac-
tion). In addition to this, Eq. (9) is employed in this comparison (r∗3

should be used instead of b in this equation). In Fig. 3 the vari-
ation of the porosity versus radius of the pellet is presented in
case of considerable increase in the volume of the solid products
with respect to the solid reactant. This figure shows the decrease
of the porosity with the progress of the reaction. At �g = 10.5 this
figure clearly shows that the porosity at the surface of the pellet
Fig. 1. Comparison of this work (continuous lines) with results of Shiravani et al.
[25] (dotted points), �2

g = 38.8, ε0 = 0.54, � = 0.1, Sh = ∞, employing Eq. (9).
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Fig. 2. Comparison of this work (continuous lines) with results of Georgakis et
al. [22] (dotted points), �2

g = 38.8, ε0 = 0.54, � = 0.001, Sh = ∞, t(s) = �g × 30.07,
employing Eq. (9).

Fig. 3. Variation of the porosity along the pellet by the progress of reaction. Z =
3.09, � = 15.16, �2

g = 38.8, � = 0.001, Sh = ∞, employing Eq. (9).

Fig. 4. Gas concentration profile versus radius of the pellet at different times. Z =
3.09, � = 15.16, �2

g = 38.8, � = 0.001, Sh = ∞, employing Eq. (9).
Fig. 5. Comparison of this work (continuous lines) with results of Prasannan et al.
[26] (dotted points), �2

g = 0.167, ε0 = 0.5, � = 0.001, Sh = ∞.

[26] is presented for different values of the reaction Thiele modulus.
The accumulation parameter is about 0.001 (a gas–solid reaction)
in this figure. In Fig. 6 comparison of the results of Bhatia [13] (ran-
dom pore model) with this work in a liquid–solid reaction system
(� = 0.5) is presented. The comparison reveals complete agreement
between the results. Moreover, the conversion–time results of a
liquid–solid system for different values of Z and �r are presented
in Figs. 7 and 8 respectively. These figures show the flexibility of
Rayleigh–Ritz finite element method in the various reaction condi-
tions. In Fig. 9 the variation of the porosity in random pore model
for a liquid–solid system in case of significant structural changes
(Z = 3.09) is depicted at different times. This figure shows that at
�r = 1.9, the porosity at the surface of the solid pellet becomes zero
while the major parts of the solid pellet are still remaining inacces-
sible. This figure also reveals that in the presence of extreme fluid
concentration gradient accompanied with structural changes, the
major parts of the solid still completely unreacted. Finally in Fig. 10

application of the random pore model to predict the experimental
data of Hartman and Coughlin [27] for the reaction of sulfur diox-
ide with limestone (� = 0.001) at 1123 K (850 ◦C) for three different
particle sizes is surveyed. The sulfation reaction proceeds rapidly in
its early stages slow down as the time of exposure continues, and

Fig. 6. Comparison of this work (continuous line) with the results of Bhatia [13]
(dotted points) for a liquid–solid system.�r = 3, = Z = 1,ˇ = 0, ε0 = 0.3, � = 0.5, Sh = ∞.
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Fig. 7. Conversion–time curves in liquid–solid system for various values of Z. Param-
eters are: �r = 3,  = 1, ˇ = 1, ε0 = 0.3, � = 0.5, Sh = ∞.

Fig. 8. Conversion–time curves in liquid–solid system for various values of �r .
Parameters are: Z = 1.5,  = 1, ˇ = 1, ε0 = 0.3, � = 0.5, Sh = ∞.

Fig. 9. Variation of the porosity in a liquid–solid system along the pellet by the
progress of reaction. Z = 3, �r = 10,  = 1, ˇ = 1, ε0 = 0.6, � = 0.5, Sh = ∞.

Fig. 10. Application of random pore model to experimental data of Hartman and
Coughlin [27]. Continuous lines are the results of this work, dashed lines are the
modeling of Bhatia and Perlmutter [12]. Parameters are: Z = 3.09,  = 2.5, Sh = ∞,
ε0 = 0.52, MB/	B = 16.9 cm3/mol, CAg = 3.2 × 10−8 mol/cm3, � = 0.001, �r = 2.46t (min),
s0 = 14.3 × 104 cm2/cm3, k =4.34 cm4/(mol s),ˇ = 185�particle diameter 0.565 mm,�
particle diameter 0.9 mm, � particle diameter 1.12 mm; corr. coeff. in case of particle

dia. = 0.565 mm is 0.9971 for this work and is 0.993 for the results of Ref. [12]; corr.
coeff. in case of particle dia. = 0.9 mm is 0.9905 for this work and is 0.993 for the
results of Ref. [12]; corr. coeff. in case of particle dia. = 1.12 mm is 0.9385 for this
work and is 0.940 for the results of Ref. [12].

the major portion of sulfur dioxide is sorbed by the solid particles
during about the first 15 min of the reaction. Microscopic exam-
ination of this reaction revealed that the external surfaces of the
sulfated samples were very smooth, while most of the pores were
filled with the reaction product [27]. In this comparison, the effec-
tive diffusivity of the gas in the product layer (Dp) is the fitting
parameter i.e. the value of the ˇ (containing the Dp) was found
by trial and error when the experimental data were fitted by the
model. Fig. 10 shows the agreement between the computer code
(this work) and experimental data at the best fit value of ˇ = 185.
The corresponding value of Dp to this level of ˇ is 9.31 × 10−13 m2/s.
Hartman and Coughlin [27] obtained the value of Dp to be
6 × 10−13 m2/s in their work. The computer program also predicts
the surface blockage time of the solid reactant to be about 15 min.

5. Conclusion

In this paper coupled nonlinear partial differential equations
of fluid–solid reactions were numerically solved by Rayleigh–Ritz
finite element method successfully. Comparison of the results of
this work with other existing solutions for gas–solid systems and

liquid–solid systems has been done in this effort. Results of this
work predict the behavior of the reactions such as pore mouth
closure (leading to incomplete solid conversion) successfully with
considerable accuracy. Moreover, the results of liquid–solid reac-
tions in the presence of extreme liquid concentration gradients
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ccompanied with significant structural changes in the solid reac-
ant have been predicted very well.

ppendix A. Nomenclature

= CA/CAg dimensionless fluid concentration
= CB/CB0 dimensionless solid concentration

A fluid concentration in the pellet
Ag bulk fluid concentration
B solid concentration
B0 initial solid concentration
e effective diffusivity of fluid A in the pellet
e0 initial effective diffusivity of fluid A in the pellet
p effective diffusivity of fluid A in the product layer

p shape factor of the pellet = 1, 2, 3 for slab, cylinder and
sphere, respectively

g shape factor of the grain = 1, 2, 3 for slab, cylinder and
sphere, respectively
length of an element

,j position indexes
reaction rate constant, cm/s for modified grain model,
cm4/(mol s) for the random pore model respectively

A molecular weight of gaseous reactant
B molecular weight of solid reactant
D molecular weight of solid product

distance from center of the pellet
g radius of unreacted core in the grain
g0 initial grain radius
∗ = rg/rg0 dimensionless unreacted radius in the grain

characteristic pellet length
0 reaction surface area per unite volume

time index
h Sherwood number

absolute temperature (K)
time
solid conversion

= m/R dimensionless position in the pellet
¯ = y− ya local or element coordinate

pellet porosity
0 initial pellet porosity
B true molar density of solid reactant B
D true molar density of solid product D
B stoichiometric coefficient of solid reactant
= ε0CAgMB/	B(1 − ε0) accumulation parameter
= 2k	B(1 − ε0)/MBDpS0 product layer resistance

g = kCAgMBt/	Brg0 dimensionless time for the modified grain

model
r = [kCAgS0/(1 − ε0)]t dimensionless time for the random pore

model
r = R

√
k	BS0/MBDe0 Thiele modulus for random pore model

[

[

ing Journal 148 (2009) 533–538

� = R
√
Fgk(1 − ε0)/Derg0 reaction Thiele modulus for the pellet

in the grain model
�g =

√
krg0/2DpFg reaction modulus for the grain
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